On general convergence behaviours of finite-dimensional approximants for abstract linear inverse problems

نویسندگان

چکیده

In the framework of abstract linear inverse problems in infinite-dimensional Hilbert space we discuss generic convergence behaviours approximate solutions determined by means general projection methods, namely outside standard assumptions Petrov–Galerkin truncation schemes. This includes a discussion mechanisms why error or residual generically fail to vanish norm, and identification practically plausible sufficient conditions for such indicators be small some weaker sense. The presentation is based on theoretical results together with series model examples numerical tests.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Inference for General High - Dimensional Linear Inverse Problems

This paper presents a unified geometric framework for the statistical analysis of a general ill-posed linear inverse model which includes as special cases noisy compressed sensing, sign vector recovery, trace regression, orthogonal matrix estimation, and noisy matrix completion. We propose computationally feasible convex programs for statistical inference including estimation, confidence interv...

متن کامل

Finite Dimensional Hilbert Spaces and Linear Inverse Problems

Linear Vector Space. A Vector Space, X , is a collection of vectors, x ∈ X , over a field, F , of scalars. Any two vectors x, y ∈ X can be added to form x+y ∈ X where the operation “+” of vector addition is associative and commutative. The vector space X must contain an additive identity (the zero vector 0) and, for every vector x, an additive inverse −x. The required properties of vector addit...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

Convergence rates for the Bayesian approach to linear inverse problems∗

Recently, the metrics of Ky Fan and Prokhorov were introduced as a tool for studying convergence in stochastic ill-posed problems. In this work, we show that the Bayesian approach to linear inverse problems can be examined in the new framework as well. We consider the finitedimensional case where the measurements are disturbed by an additive normal noise and the prior distribution is normal. Co...

متن کامل

Inverse Problems for Linear Forms over Finite Sets of Integers

Let f(x1, x2, . . . , xm) = u1x1 + u2x2 + · · · + umxm be a linear form with positive integer coefficients, and let Nf (k) = min{|f(A)| : A ⊆ Z and |A| = k}. A minimizing k-set for f is a set A such that |A| = k and |f(A)| = Nf (k). A finite sequence (u1, u2, . . . , um) of positive integers is called complete if n

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asymptotic Analysis

سال: 2021

ISSN: ['0921-7134', '1875-8576']

DOI: https://doi.org/10.3233/asy-211678